
By Glenn Fleishman WebSpy

I s s u e # 1 0 A u g u s t 1 5 , 1 9 9 6

Letters, we get letters
But how we get them—aye, there’s the rub
I’m really not that old, but I did once own a 300 bit-per-
second (bps) modem. Back in those days, every bit counted.
Because of this, many of the bits (no pun) and pieces of
today’s Internet reflect some of the odd standards required
then to maximize every ounce of data transmission.

The best example of this is E-mail. Way back when, it was
nigh-on impossible to send a program or a “binary file” (any-
thing but pure text) over the Internet’s E-mail system without
some funky maneuvering. These limitations don’t (in general)
apply now, but the standards that were set then are still
followed today.
P A G E 1 / 11

I s s u e # 1 0 A u g u

By Glenn Fleishman WebSpyLETTERS, WE GET LETTERS
Cutting your digital teeth
If you use Eudora, a popular POP (Post Office Protocol) mail client from
Qualcomm, you’ve seen the terms UUEncode, Binhex, Apple Single, and Apple
Double—and probably not known what they meant. Even if you use some-
thing besides Eudora, you’ve encountered one or more of these, though the
last three are best-known in the Apple Macintosh community.

In the days of those old 300-bps modems (or the even-slower 110-bps
modems—oh, yeah, they really existed), the protocols that drove modems
had to do lots of error detection and “framing.” These two items still play a
principal role in the workings of all data communication.

Let’s review basic computing, though, before I stick your head in this data
structure. As you probably know, a bit is a single binary digit; it’s either 0 or 1,
with no values in between. A byte is made up of eight bits (some computers
actually use different sets of bits than bytes, but typically data are transferred
in byte-sized nuggets).

Since each position (remember, there are eight of these) in a byte is a bit
s t 1 5 , 1 9 9 6 P A G E 2 /11

I s s u e # 1 0 A u g u

By Glenn Fleishman WebSpyLETTERS, WE GET LETTERS
that can represent one of two numbers, the eight bits in combination can
represent 2 to the eighth power numbers, or a total of 256 different values. So
an eight-bit byte can represent the numbers from 0 to 255.

Sometimes, as you’ll see, you might use more bits or fewer to transmit
a byte.

Errors and parity
Error detection (as opposed to correction) is the ability of a piece of data to
contain information about itself that allows the recipient to check that the
integrity of the data is intact. That is, if you send, say, seven bits, you want to
know that the seven bits that left are the same ones that arrived—since they
might not be, given noise on the line, static, machine burps, whatever.

Error detection is one of the cornerstones of information theory—the
field whose practitioners spend a lot of time thinking about information
transmission and signal (data)-to-noise ratios. Error correction is a higher-level
idea; once an error has been detected, correction allows you to recreate the
s t 1 5 , 1 9 9 6 P A G E 3 /11

I s s u e # 1 0 A u g

By Glenn Fleishman WebSpyLETTERS, WE GET LETTERS
information. For example, on all CD-ROMs, several bits get added to every byte
to essentially allow the byte to be recreated even if part of it is unreadable or
doesn’t check out correctly.

Error detection is done through checksums and parity. Checksums are
complex animals: they’re the result of doing an equation on an entire set of
data, such as a file you’re sending. The equation derives a number based on all
the data in the file. When the file’s received on the other end, the machine
there runs the same equation and checks the result. If it’s off, the file was
corrupted in transmission.

Parity is a simpler concept: you add the number of bits set to “1” in each
byte you’re sending. With “even” parity, if the number of bits set to “1” is odd,
the parity bit is set to “1,” making the total number of bits set to “1” an even
number; otherwise, the parity bit is set to “0” (preserving an even number of
bits set to “1”). Odd parity is the opposite of this.

“Framing” simply involves sticking a consistent signal (piece of data) on
both ends of a byte. If you’re sending 8 bits (7 data bits with 1 parity bit), a
u s t 1 5 , 1 9 9 6 P A G E 4 /11

I s s u e # 1 0 A u g u

By Glenn Fleishman WebSpyLETTERS, WE GET LETTERS
zero, called a “start bit,” is automatically placed at the beginning, and you put
two zeroes at the end—these are called “stop bits”—for a total frame of 11
bits. This arrangement is often referred to in terminal programs—programs
used to dial into remote computers, such as UNIX systems—as “7-E-2,“ for
seven data bits, even parity, two stop bits.

Framing is important because, if things get out of whack, the two mo-
dems involved will know that every eight bits will have three zeros between
them (at least, in the scenario above). This allows them, for instance, to
resynchronize after someone picks up the phone while someone else is in
midtransmission.

ASCII and binary
All this brings us to the modern era. As modems improved in speed and
technology, and phone lines went more and more digital behind the scenes,
so that noise level went down, more data could be transferred more quickly
and accurately, and less framing and error correction was necessary. Today’s
s t 1 5 , 1 9 9 6 P A G E 5 /11

I s s u e # 1 0 A u g u

By Glenn Fleishman WebSpyLETTERS, WE GET LETTERS
modems typically can support the 8-N-1 arrangement, which has eight data
bits, no parity at all, and one stop bit.

You’re probably asking about the seven-bits-versus-eight issue at this
point. Seven bits can represent 2 to the seventh-power numbers, or the range
from 0 to 127. It happens—by design, not accident—that, in those seven bits,
you can encode the entire Roman alphabet, including most characters neces-
sary for all major languages that use that alphabet; the figures zero through
nine; punctuation; and 32 control characters that are really remnants of the
days of workstation terminals.

So you don’t really need that eighth bit to send pure text—and that’s
how this all starts to make some sense. Eight bits are required to transfer
programs, because instruction codes and data for computer applications may
be any number between 0 and 255. Seven-bit data are called ASCII (American
standard code for information interchange) data, for the set of characters
between 0 and 127, the ASCII set; eight-bit data are “binary,” a misnomer that
nevertheless means that the data employ values between 0 and 255.
s t 1 5 , 1 9 9 6 P A G E 6 /11

I s s u e # 1 0 A u g u

By Glenn Fleishman WebSpyLETTERS, WE GET LETTERS
But in the old days, when this was all codified, people weren’t really
transferring programs and other binary data between machines. They were
using modems to type remotely on mainframes and minicomputers using
“terminal emulation” programs. These programs allowed early home comput-
ers to dial up a mainframe and interact with it just as if they were dumb
terminals (no CPU, you see, to do complex tasks locally; all the computation is
done on the mainframe).

It was also certainly more efficient to send 10-bit bytes (7 data) instead of
11-bit bytes (8 data) when you could only transmit 110 bits per second!
Sending an extra bit would have made you 10 percent slower—and at those
speeds, you could watch the computer type at you.

When the faster modems were introduced, packing more data into the
same phone lines, new protocols allowed the transmission of eight-bit, “bi-
nary” data. But by then, the rest of the system—especially its orientation
toward seven-bit data—was cemented in place.
s t 1 5 , 1 9 9 6 P A G E 7 /11

I s s u e # 1 0 A u g u

By Glenn Fleishman WebSpyLETTERS, WE GET LETTERS
What the heck is UUEncode?
We’re near the end of our journey now! So let’s pretend you were one of those
pioneers, and you had eight-bit data, such as a program, that you needed to
transmit at the stunning speed of 300 bps to some remote colleague. How
could you do this? Obviously, if you had a way of representing the eight-bit
data in seven-bit chunks, you could still get the data across. But your col-
league would need a program at the other end to decode this information
and turn it back into binary data.

Thus we get UUencoding and UUdecoding, or Unix-to-Unix encoding
and decoding. Unix to Unix was the idea of transferring data from one ma-
chine to another, both of them presumably running the Unix operating
system. The encoding took a binary program in, and produced a seven-bit
ASCII file that could be transmitted over modems using E-mail programs or
other methods. On the other end, the recipient would run the decoder and
turn the file back into pure binary.

(A related protocol developed in the Macintosh community is the Binhex
s t 1 5 , 1 9 9 6 P A G E 8 /11

I s s u e # 1 0 A u g u

By Glenn Fleishman WebSpyLETTERS, WE GET LETTERS
format, which converts binary data to hexadecimal code—a base-16 system
number format that uses the digits 0 through 9 and the letters A through F to
represent the numbers from 0 through 15. It’s not terribly efficient, but it was
well developed and deployed among Mac users, who were without access to
UUen/decoders—and the principal is identical.)

You’re probably getting the picture: By the time modem protocols im-
proved to allow binary transmission, the mail systems—and notably the
underlying software that ran the modems connecting these systems—had all
been built around sending and receiving only seven-bit ASCII ! So even
though the world had sped past, many systems still couldn’t deal with eight-
bit data.

Even for the last several years, when most mail systems have been up-
dated to deal with binary data, there’s enough other incompatibility across
systems, especially between commercial mail programs and their gateways,
so that sending files in UUencoded format still is often the only way to get
data through. Typically, the gateway will do the work of en- and decoding the
s t 1 5 , 1 9 9 6 P A G E 9 /11

I s s u e # 1 0 A u g

By Glenn Fleishman WebSpyLETTERS, WE GET LETTERS
data automatically, so the users sending data to each other don’t have to run
separate encoders and decoders.

(As noted above, Qualcomm’s Eudora supports several methods of
attaching files: UUencoding and Binhex, the two major ASCII encoding meth-
ods—both are included in the Pro version—and Apple Single and Apple
Double. The Apple Single method encodes Macintosh files, which have special
resource forks containing icons and other bits, into a format that allows them
to be reassembled on the other side, while Apple Double compresses the file
before its transmission, saving time in uploading and downloading.)

Out of the frame
As more and more people use programs like Eudora, or even America Online’s
E-mail system, we should see less and less of the old ASCII encoding. Two
Eudora users sending to each other can choose any method in common
without thinking about it. America Online’s mail system has been able to
automatically convert files attached in AOL when they’re sent out to the
u s t 1 5 , 1 9 9 6 P A G E 10 /11

By Glenn Fleishman WebSpy

I s s u e # 1 0 A u g

LETTERS, WE GET LETTERS
Internet, and decode most files coming in, too.
But, even though today’s modems are a hundred times faster than those

I cut my teeth on, and today’s networks have literally thousands of times more
capacity, from the point of view of some programs, E-mail is still basically a
little straw sucking sand from one desert to another.
©1996 Adobe Systems Incorporated P A G E 11 / 11u s t 1 5 , 1 9 9 6

